
Automated Classification of EEG Signals for Predicting
Students’ Cognitive State during Learning

Xi Liu, Pang-Ning Tan
Michigan State University
{liuxi4,ptan}@cse.msu.edu

Lei Liu∗
Huawei Technologies, USA

leiliu@ieee.org

Steven J. Simske
HP Labs, USA

steven.simske@hp.com

ABSTRACT
For distance learning applications, inferring the cognitive states
of students, particularly, their concentration and comprehension
levels during instruction, is important to assess their learning ef-
ficacy. In this paper, we investigated the feasibility of using EEG
recordings generated from an off-the-shelf, wearable device to au-
tomatically classify the cognitive states of students as they were
asked to perform a series of reading and question answering tasks.
We showed that the EEG data can effectively predict whether a stu-
dent is attentive or distracted as well as the student’s reading speed,
which is an important measure of reading fluency. However, the
EEG signals alone are insufficient to predict how well the students
can correctly answer questions related to the reading materials as
there were other confounding factors, such as the students’ back-
ground knowledge, that must be taken into consideration. We also
showed that the accuracy in predicting the different cognitive states
depends on the choice of classifier used (global, local, or multi-task
learning). For example, the concentration level of a student can be
accurately predicted using a local model whereas a global model
that incorporates side information about the student’s background
knowledge is more effective at predicting whether the student will
correctly answer questions about the materials they read.
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1 INTRODUCTION
The use of technology in education has become increasingly preva-
lent to aid instructors in making their lectures more vivid and the
learning materials more accessible to students. However, the use of
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technology to support real-time monitoring of how well students
grasp the materials they learn is still in its infancy. The ability
to measure the student’s concentration and comprehension levels
during instruction is essential as they provide valuable feedback
to the instructor whether the learning goals have been achieved
and to identify the type of intervention needed to improve learning
outcomes. This has led to the growing interest in developing Brain
Computer Interface (BCI) systems to collect and analyze signals
from the human brain to determine its cognitive state [10] [16]. The
advantage of using brain signals is that they provide an objective
way to measure the students’ current state of mind compared to the
traditional approach where instructors have to subjectively gauge
the students’ concentration and understanding based on their facial
and bodily expressions.

In recent years, there has been increasing interest in utilizing
EEG signals to determine the cognitive state of students as they
engaged in various learning activities. Traditional EEG devices are
expensive and bulky, making it cumbersome to conduct experi-
mental studies in a non-controlled environment. However, with
the rapid advances in sensing technology, new generation of EEG
devices that are non-invasive, portable, and affordable have been
developed, thus providing an opportunity to conduct measurement
studies where the human subjects are immersed in a real-world
environment. In this paper, we investigate the feasibility of using
an off-the-shelf, wearable EEG device to monitor the concentration
and understanding levels of human subjects as they were asked to
perform a series of reading and question answering tasks.

Previous studies using EEG signals for classifying cognitive state
such as attention have focused mostly on detecting changes in the
brain signals for a limited subset of the band waves [7][4][16]. They
have also considered using only a limited number of features ex-
tracted from the EEG recordings (e.g., root mean square of energy
value for a particular band wave). More importantly, none of the
previous studies have considered predicting the comprehension
level using EEG data. Other issues such as the choice of classifier
used and how it affects classification performance have not been
sufficiently investigated in the past. To address these concerns, we
have extracted a broad set of features from various frequency bands
and assess their relevance to the classification task. We have also
compared the relative performance of local, global, and multi-task
learning models to determine their effectiveness at discriminating
the different cognitive states. A multi-task learning approach si-
multaneously learns the local model for each human subject by
solving a joint optimization problem, instead of learning them in-
dependently. It can thus be regarded as a hybrid between the local
and global models.

We conducted a study in which each human subject was asked
to perform a series of reading and question answering tasks. The
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Table 1: Summary of EEG classification tasks.

Cognitive state Binary classes Mental task
Concentration
level

Attentive/
Distracted Reading task

Reading speed Fast/slow Reading task
Recall level Good/Poor Question-answering task

EEG data collected from this study were used to develop predictive
models for three cognitive state classification tasks summarized in
Table 1. The classification tasks are useful as they provide valuable
feedback that can be used to improve learning outcomes. For ex-
ample, accurate classification of concentration level can help the
instructors to determine whether the students paid careful atten-
tion to the materials that were taught. Second, reading speed is
an important indicator of reading fluency or the decoding skills
of readers [8]. Reading speed is measured as a ratio between the
duration in which a subject spent on the reading material and the
number of words in the given passage. A threshold is set to decide
whether the reading speed is high or low. For example, if a student
spends, on average, 200 words per minute to read a given passage,
then a fast reading speed, say, above 250 words per minute, may in-
dicate that the passage can be easily comprehended by the student
or that the student tries to quickly skim through the material with-
out focusing on its details. Finally, the ability to correctly answer
questions related to the reading materials provide a good indication
about the reading comprehension skills of the student.

A major challenge to this research is obtaining reliable ground
truth labels for the various classification tasks. For example, it
is hard to tell whether a subject is attentive or distracted during
a reading session. In [11], videos of the subjects’ facial expres-
sions were recorded for experts to interpret whether they were
paying attention. Such visual inspection is very subjective and is
prone to misinterpretation. To overcome this problem, following
the approach used in [10], the EEG measurements were taken both
during reading and non-reading (“mind-wandering") sessions to
distinguish between attentive and distracted states of mind.

In summary, the main contributions of this work are as follows:
(1) We investigated the feasibility of using EEG data to infer

various cognitive states of human subjects. Our results sug-
gested that EEG data can reliably predict the concentration
and reading speed levels of the subjects. However, predict-
ing recall level is more challenging as it can be affected by
other external factors (e.g., proficiency and background of
the subjects).

(2) We designed experiments to collect ground truth labels for
the various cognitive state classification tasks.

(3) We compared the performance of various types of classifiers
(local, global, and multi-task learning) in terms of their accu-
racy in distinguishing different cognitive states. We showed
that a local model is sufficient to predict the students’ con-
centration level. However, a global model that incorporates
side information is more effective at predicting recall level
(though its accuracy is lower than those for concentration
and reading speed level predictions).

2 RELATEDWORK
This section reviews some of the previous works on the application
of EEG data for educational purposes. Recent progress in neuro-
science has given us a deeper understanding of how the brain
works and provides us with novel ways to detect and analyze brain
activities. While there are other brain activity monitoring and imag-
ing techniques available beside EEG, many of them, such as MEG
(magnetoencepha-lography) and fMRI, require strict working con-
ditions (e.g. in a shielded room), special equipments (such as liquid
helium-cooled detectors), and licensed experts to operate the ma-
chine. EEG devices are easier to use and non-invasive compared
to others such as electrocorticography, which make them more
suitable to be deployed in a classroom or other real-world envi-
ronment. For this reason, EEG has been widely used, not only in
a clinical setting, but also to aid in neuroscience, cognitive sci-
ence, and psychology research. Various EEG studies have been
conducted to explain human emotions and expressions [14] [4], as
well as measuring the cognitive load when performing tasks such
as driving [15] and studying [3].

Monitoring the cognitive states of students is particularly useful
for applications such as distance learning due to the lack of face-
to-face interactions between the instructor and students. Previous
research has shown that cognitive efforts such as concentration was
found to be highly correlated with EEG frequencies [16] [5] [11].
Nevertheless, obtaining the ground truth label about the concen-
tration level of a human subject is harder to determine. In [11], the
participants were subjected to two different scenarios: learning with
and without distractions, in which the former was used to represent
concentrated state of mind while the latter represents distracted
state. In [9], the participants were asked to rate their own per-
ceived level of concentration with SAM (Self-Assessment Manikin)
test [13]. The self-assessment is used to provide the ground label
of the data. However, labels obtained based on self reporting is
harder to use since they vary from one subject to another. In [11],
participants’ facial expressions were also recorded for experts to
determine their concentration level. This approach is highly sub-
jective and prone to misinterpretation.

Previous studies are also limited in that they focus on EEG signals
from a limited number of band waves to determine the cognitive
state of the subjects. In [7], only the α band wave was investi-
gated for cognitive loads whereas in [9], the α and θ band waves
were extracted as features for concentration classification. There
is also a commonly used index of concentration level known as
E-signals [16], which is based on the α , β and θ band waves. None
of these studies consider the complete spectrum of the EEG signals.
Many of the previous studies also use the raw values of the band
waves to train their models. For example, in [16], the task engage-
ment index was calculated using the magnitude of the band waves,
while in [14], the signals from each channel electrode was directly
used as features. Finally, none of the previous studies consider using
EEG data to monitor the understanding level of students.

3 METHODOLOGY
This section describes our methodology for using EEG data to infer
the cognitive states of human subjects. The EEG data was obtained
using an adjustable, lightweight EEG headset called Muse [1]. The
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Table 2: Basic Information of the Participants.

Subject ID Gender English
Proficiency

Technical
Background

1 Male High (native) Mid
2 Male High High
3 Male Low High
4 Male High High
5 Female High (native) Low
6 Male High High
7 Male Mid High
8 Male Low Low
9 Female Mid Low
10 Female Low Low
11 Female Low Mid

Muse headset has 7 sensors capable of reading 4 channels of data—
two on the forehead (Fp1 and Fp2) and two behind the ears (TP9 and
TP10). The EEG signals were generated at a sampling rate of 220Hz.
Muse not only collects the raw EEG signals, it also has a digital
signal processing component for de-noising and decomposing the
time series into measurements of power spectral density.

3.1 Design of Experiment
The goal of our study is to investigate the feasibility of using EEG
recordings to determine the cognitive state of the human subjects
as they were provided with some passages to read. Each subject was
initially invited into a quiet room. An instructor was present to help
the subject put on the Muse device properly and to pair the Muse
device with a computer via Bluetooth. The MuseLab software was
installed on the computer to visualize and record the EEG signals.
Each subject was required to perform the following tasks:

• Reading: The subject was given a passage to read from the
abstract of an article that appeared in the Science Journal.
The articles belong to many subject areas including environ-
mental science, education, physics, and cell biology. The ab-
stracts chosen do not require extensive technical background
to understand their content. Each subject was allocated two
minutes to complete the reading task.

• Question answering: Each reading task was immediately
followed by a question-answering task. The subjects were
required to answer the following 3 multiple-choice questions
related to the reading material:

(1) Which subject area best describes this article?
(2) What is this article mainly about?
(3) Which of the following is NOT mentioned in this article?
The 3 questions were ordered in increasing level of difficulty
to assess the recall level of the subjects, i.e., whether they
understood the passage they had read.

• Mind wandering: With their eyes open, the subjects were
asked to stay in a comfortable pose. They were allowed to
look around, but were asked not to focus their thought on
anything for a duration of one minute. This mind-wondering
session is used to capture EEG signals when the subject is
not concentrating.

Table 3: Schedule of mental task experiment.

ID Task ID Task
A1-1, R1-1 Reading, Q&A A2-1, R2-1 Reading, Q&A
A1-2, R1-2 Reading, Q&A A2-2, R2-2 Reading, Q&A
M1-3 Mind wandering M2-3 Mind wandering
A1-4, R1-4 Reading, Q&A A2-4, R2-4 Reading, Q&A
A1-5, R1-5 Reading, Q&A A2-5, R2-5 Reading, Q&A
M1-6 Mind wandering M2-6 Mind wandering
A1-7, R1-7 Reading, Q&A A2-7, R2-7 Reading, Q&A
A1-8, R1-8 Reading, Q&A A2-8, R2-8 Reading, Q&A
M1-9 Mind wandering M2-9 Mind wandering
A1-10, R1-10 Reading, Q&A A2-10, R2-10 Reading, Q&A
A1-11, R1-11 Reading, Q&A A2-11, R2-11 Reading, Q&A
M1-12 Mind wandering M2-12 Mind wandering
A1-13, R1-13 Reading, Q&A A2-13, R2-13 Reading, Q&A
A1-14, R1-14 Reading, Q&A A2-14, R2-14 Reading, Q&A
M1-15 Mind wandering M2-15 Mind wandering
A1-16, R1-16 Reading, Q&A A2-16, R2-16 Reading, Q&A
A1-17, R1-17 Reading, Q&A A2-17, R2-17 Reading, Q&A
M1-18 Mind wandering M2-18 Mind wandering
A1-19, R1-19 Reading, Q&A A2-19, R2-19 Reading, Q&A
A1-20, R1-20 Reading, Q&A A2-20, R2-20 Reading, Q&A
M1-21 Mind wandering M2-21 Mind wandering
A1-22, R1-22 Reading, Q&A A2-22, R2-22 Reading, Q&A
M1-23 Mind wandering M2-23 Mind wandering

There were 11 volunteer subjects who participated in the study.
All subjects were healthy, right-handed, with varying degrees of
English proficiency and technical background, as shown in Ta-
ble 2. Each subject was required to complete 30 reading/question-
answering and 16 mind wandering trials. We divided the trials into
2 separate sessions (conducted on two different days) to avoid over-
taxing the subjects. Table 3 presents the complete schedule of our
mental task experiment.

3.2 Data Collection
We collected EEG recordings from each subject for all 76 mental
tasks (30 reading, 30 question answering, and 16 mind wandering
tasks). Previous studies have suggested there is significant rela-
tionship between a cognitive task such as concentration and the
different frequency bands of EEG signals [7] [12] [6]. Instead of us-
ing the raw EEG signals, we use the preprocessed signals extracted
by the digital signal processing (DSP) component of Muse. The
typical frequency bands used in previous studies are δ (1-4 Hz), θ
(5-8 Hz), α (9-13 Hz), β (12-30 Hz) and γ (30-50 Hz). Description
about the time series can be found in [1].

As previously noted, Muse generates 4 channels of data, where
each channel has its own α , β , γ , δ , and θ time series. We took the
average value of the four channels to calculate the average relative
power for each frequency band. In addition, we also analyzed the
is_дood signal associated with each channel. Since the data from
one or more channels is not always reliable due to various reasons
(e.g., the headgear not mounted properly or the Bluetooth is dis-
connected), the is_дood time series indicates which channels are
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Figure 1: Time series that shows the working condition of
Muse for two subjects, with ID=10 and ID=11. The vertical
axis represents the percentage of time during which none
of the 4 channels are working. The blue stems correspond to
reading trials, the green ones are question answering trials,
while the red ones are mind wandering trials.

working properly [1]. If the data for a given channel is unreliable,
we ignore its value when computing the average relative band
power. At least one of the channels must work properly for us to
trust the EEG data. Furthermore, as the number of channels that
worked properly may vary from time to time, we calculated the
percent of time within each trial for which all four channels were
not working properly. If the percent of time exceeds 50% for a given
trial, we discarded its corresponding EEG data. Figure 1 shows the
percentage of time in which the sensors are not operating correctly
for two subjects, with IDs #10 and #11, respectively. As most of
the data are unreliable, we decided to remove these two subjects
from our experimental study. We ended up using EEG data from
the remaining 9 subjects in our study.

3.3 Feature Extraction
Figure 2 shows examples of the average α , β , γ , δ , and θ time series
from a same subject during one of the reading and mind wander-
ing trials. The EEG signals for the two tasks are quite different,
suggesting the possibility of using a classifier to discriminate the
two cognitive states. Instead of using the raw time series for clas-
sification, we derive the following summary statistics from each
of the 5 relative band powers—root-mean-square value, maximum
and minimum amplitude, peak-to-peak of amplitude, variance, and
approximate entropy—to create 30 features (5 bands × 6 summary
statistics) characterizing the EEG signals.

In addition to the EEG signals, we have also collected side infor-
mation about the subjects and the reading materials.

• English proficiency and technical level of the subjects: Fluency
in English may affect the performance of a subject during
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Figure 2: An example of the relative band waves during a
reading trial (upper) and a mind-wandering trial (lower).

the reading and question answering sessions. Since the read-
ing materials were obtained from the Science journal, the
technical background of the human subjects is expected to
have an impact on their understanding level.

• Reading time and number of words in the abstract: The reading
speed is computed based on the ratio between number of
words in a given abstract to reading time.

• Difficulty level of the reading material: We apply the Linsear
write index [2], a widely-used readability metric for English
text. The metric is calculated based on sentence length and
the number of words used that have three or more syllables.

• Difficulty level of the questions: The multiple choice questions
may have different levels of difficulty. To compute the diffi-
culty level of a question for a given human subject, we took
the average number of correct answers provided by other
human subjects on the same question. If there are few partic-
ipants who can answer the question correctly, the difficulty
level of the question will be high.

The features used for the different classification tasks are sum-
marized in Table 4. We use the EEG signals to classify the concen-
tration level and reading speed of the subjects during their reading
trials. To classify the recall level, we also use side information about
the subject and reading material in addition to the output of the
concentration level classifier.

3.4 Classification
We applied the following classifiers to the EEG data:

• Local model. We train a local model for each subject inde-
pendently using the subject’s training data. The test data for
each subject is then classified using the local model trained
for the subject.

• Global model. We train a global model by pooling together
the training data from all the subjects. In this setting, the
samemodel is used to classify the test data for all the subjects.
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Table 4: Features used to classify the cognitive states of the
human subjects.

Feature
category Features Concentration

Level
Reading
Speed

Recall
Level

EEG EEG signals x x
Reading
material

Size of article xLinsear index

Learning
process

Concentration
xDuration

Reading speed
Subjects’
background

English level xTechnical level

• Multi-task learning: In this setting, the test data for each
subject is classified using his/her local model. Here, the lo-
cal models of the subjects are trained by optimizing a joint
objective function, as described in Section 3.4.2.

3.4.1 Logistic Regression. We employ the L1-regularized logistic
regression to train both our local and global classification models.
Logistic regression is a widely used linear model for binary classifi-
cation. The L1-regularizer was used to generate sparse models and
prevent overfitting. The objective function is given below:

min
θ

n∑
j=1

log (1 + exp(−yj (θT xj ))) + γ | |θ | |1 (1)

where θ is the model parameter, γ is the regularizer, n is the total
number of training instances, X is the input data matrix, and y is
the class labels (−1 or +1).

3.4.2 Multi-task Learning. Multi-task learning is an emerging
learning paradigm for solvingmultiple, related learning tasks jointly
by exploiting the common structure of the problem. The approach
assumes there is a set of correlated prediction tasks to be solved,
where each task can have its own training data. In this study, the
prediction of cognitive state for each subject can be regarded as
a single learning task. Despite the differences in the EEG signals
and other features for each subject, we investigate the feasibility of
applying multi-task learning to jointly train their predictive models.
Specifically, we use the sparse graph-regularized logistic regression
classifier provided by the MALSAR [18] software package. The
classifier was designed to optimize the following objective function:

min
Θ

t∑
i=1

ni∑
j=1

log(1 + exp(−Yi j (ΘT
i Xi j ))) + ρ1 | |ΘR| |2F + ρ2 | |Θ| |1(2)

s .t . R = It − 1t /t

where, t is the number of tasks (subjects), Xi is the data matrix for
task i , Yi is ground truth labels for task i , Θ is the parameter matrix
for all t tasks, Θi is the i-th column of Θ, or the parameter vector
of the i-th task, It is a t-dimensional identity matrix, and 1t is a
t-dimensional square matrix with all elements as 1. The first regu-
larization term, | |ΘR| |2F , penalizes the deviation of each local model
from the mean model

∑t
i=1 θi , while the second regularization term,

| |Θ| |1, controls the model sparsity.

4 EXPERIMENTAL EVALUATION
We have conducted extensive experiments to provide answers to the
following research questions: (1) Can EEG data be effectively used
to recognize different cognitive states? (2) Should we use features
from all frequency bands or a subset of the bands? (3) Does the
choice of classifier affect prediction accuracy and if so, which choice
is most effective for each cognitive state prediction task?

4.1 Ground Truth Labeling
One of the key challenges in this research is to determine the ground
truth label for each trial. Our procedure for annotating the EEG
data from different trials of each human subject is described below.
Labels for Concentration Level. Following the approach used
in [5], we assign all the reading tasks to the positive (attentive) class
and the mind wandering tasks to the negative (distracted) class.
The proportions of positive and negative examples in the labeled
data are 65% and 35%, respectively.
Labels for Reading speed. Previous studies [8, 17] have suggested
a strong correlation between reading speed or fluency and reading
comprehension. We measure the reading speed for all the abstracts
read by each subject. For each subject, if the reading speed is higher
than themedian, we label the reading trial as positive (“high speed”);
otherwise, it is labeled as negative (“low speed") class. There are
almost equal proportions of positive and negative examples in the
labeled data.
Labels for Recall Level. For predicting recall level, we calculate
the number of correct answers provided by the subjects during the
question-answering trials. Since most subjects were able to answer
the first question correctly, we determine the recall level based on
the answers to the last two questions. If the answers to the last two
questions were correct, we label the question-answering trial as
positive (“good") class; otherwise it is labeled as negative (“poor")
class. The proportions of positive and negative examples in the
labeled data are 55% and 45%, respectively.

4.2 Experimental Setup
We use repeated k-fold cross validation to report the average classi-
fication performance for each method. Specifically, we divide the
dataset into k folds and use a subset of the folds for training and
the remaining for testing. This process is repeated 10 times. We
vary the training set size by setting k to 5 and 10. For example, to
obtain 10% training set, we use 10-fold cross validation, with 1 fold
reserved for training and the remaining 9 folds for testing. Similarly,
for 80% training set, we apply 5-fold cross validation, with 4 folds
reserved for training and the remaining fold for testing. For local
and multi-task learning classifier, the models were developed using
the EEG data associated with each subject. For global classifier, we
aggregated the training data from all subjects before constructing
the model.

4.3 Performance Evaluation
We reported the performance for the various cognitive state predic-
tion tasks in terms of their model accuracy as well as their F1 scores
for both positive and negative classes. Although there were initially
11 human subjects, only 9 of them produce reliable data (see Section
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Table 5: Performance comparison for concentration level
prediction

Accuracy
(%)

+ class F1
score (%)

- class F1
score (%)

80% data
for training

Local 91.88 ± 0.47 93.93 ± 0.36 87.73 ± 0.72
Global 81.42 ± 0.84 86.20 ± 0.65 71.56 ± 1.39
Multi-task 91.47 ± 0.48 93.60 ± 0.35 87.22 ± 0.77

20% data
for training

Local 85.40 ± 1.07 89.25 ± 0.77 77.27 ± 1.88
Global 79.47 ± 0.63 84.85 ± 0.46 68.15 ± 1.11
Multi-task 86.42 ± 1.02 90.00 ± 0.69 78.85 ± 1.87

10% data
for training

Local 79.72 ± 0.66 85.34 ± 0.56 67.08 ± 0.88
Global 76.46 ± 0.78 82.84 ± 0.49 65.52 ± 1.72
Multi-task 81.33 ± 0.63 86.43 ± 0.48 70.05 ± 1.1

Random
Guess

Local 55.01 65.80 34.29
Global 54.97 65.77 34.23

3.2) that will be used to report our experimental results. We also
reported the results for random guessing, which is computed based
on the proportion of positive and negative examples in the data. For
example, suppose there are n+ positive and n− negative examples in
the data, the accuracy for random guessing is (n2+ +n2−)/(n+ +n−)2.

4.3.1 Concentration Level Prediction. Table 5 shows the results
for concentration level prediction using all three classification meth-
ods (local, global, and multi-task learning). With 80% training data,
the accuracies for all three methods are high, exceeding 81%, which
suggest that concentration level can be accurately determined from
the EEG data. Furthermore, both the local and multi-task learn-
ing models appear to outperform the global model, achieving an
accuracy exceeding 90%. This suggests that the EEG signals that
characterize the attentive and distracted classes for each subject is
quite different, thus aggregating the data together to build a global
model will degrade the overall prediction accuracy.

By decreasing the training set size, the results given in Table 5
also suggest that: 1). the accuracies for all three methods will be
lower, which is not surprising; 2). The accuracy for local classifier
decreases most rapidly, from 91.88% to 79.72%, for the training set
size of 10% since there are only 3-4 training examples available for
each local classifier; 3). The accuracy for global model does not
decrease as rapidly, from 81.42% to 76.46%, because the model still
has adequate training examples (even when only 10% of the data is
reserved for training, there are still 30-40 training examples avail-
able); 3). The local models still outperform the global model, which
again indicates the importance of training personalized models
to classify concentration level; 4). Multi-task learning can exploit
information from other subjects to produce higher accuracy models
compared to the local classifiers when the training set size is small.
These results suggest that multi-task learning can produce better
models compared to the local and global classifiers when there are
limited EEG data available for each subject.

Figure 3 shows the prediction accuracy for each individual sub-
ject with 80% training data. Observe that the accuracy for both local
and multi-task learning models are higher than the global model,
which is consistent with the results shown in Table 5. Furthermore,
there is a significant difference in performance between the local
and global models for subject IDs #1 and #2. This suggests that
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Figure 3: Concentration level prediction accuracy for indi-
vidual subjects with 80% training data.

Figure 4: Pair-wise similarities between human subjects in
terms of their EEG derived features.

the EEG-derived features characterizing the classes for the two
subjects are different from those for other subjects, which is why
a global model is not as effective when applied to the EEG data.
The finding can be confirmed by looking at the heat map shown in
Figure 4, which shows the pairwise similarities between the differ-
ent subjects. The two subjects IDs #1 and #2 appear to have lower
similarities compared to other subjects.

Figure 5 compares the results of using our proposed features
against Muse’s own predictions [1], which are based on the σ band
wave only, and the E-signal features proposed in [16], which were
based on the α , β , and θ band waves. The results suggested that our
proposed features are more effective than both Muse and E-features
irrespective of the type of classifier used. This result suggests the
need to use a wider range of frequency spectrum to improve concen-
tration level prediction, unlike other prior studies that are limited
to using one or two frequency bands [7] [9].

4.3.2 Reading Speed Prediction. Next, we examine the effective-
ness of using EEG data to predict the reading speed of the human
subjects. With 80% training set size, the results shown in Table 6
suggest that the EEG features are still quite effective, i.e., signif-
icantly better than random guessing, though the accuracies are
much lower (around 67%) compared to concentration level predic-
tion (around 90%). Furthermore, all three classifiers (local, global,
and multi-task learning) are quite comparable in performance.
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Figure 5: Performance comparison for concentration level
prediction using different feature sets.

Table 6: Performance comparison for reading speed predic-
tion.

Accuracy
(%)

+ class F1
score (%)

- class F1
score (%)

80% data
for training

Local 68.07 ± 1.69 67.36 ± 1.86 68.74 ± 1.79
Global 67.92 ± 1.59 68.10 ± 1.76 67.73 ± 1.5
Multi-task 68.33 ± 1.12 68.16 ± 1.16 68.50 ± 1.2

20% data
for training

Local 59.25 ± 1.88 57.64 ± 1.96 60.74 ± 1.86
Global 63.94 ± 1.1 63.98 ± 1.31 63.87 ± 1.38
Multi-task 64.37 ± 1.3 64.31 ± 1.25 64.39 ± 1.75

10% data
for training

Local 56.75 ± 0.85 56.05 ± 1.33 57.41 ± 0.7
Global 61.46 ± 1.18 60.78 ± 1.71 62.09 ± 1.26
Multi-task 61.05 ± 0.85 60.16 ± 1.61 61.88 ± 0.44

Random
Guess

Local 50.01 50.39 49.63
Global 50.00 50.38 49.62

When the training set size decreases, the performances for all
three methods will degrade, with the accuracy for the local classifier
decreases most rapidly compared to the global classifier and multi-
task learning. Unlike concentration level prediction, both the global
and multi-task learning models become significantly better than the
local models. This is because reading speed classification is a much
harder problem, thus, having sufficient training data is important
to distinguish fast from slow reading speed.

In addition, Figure 6 shows the prediction results for the individ-
ual subjects with 80% training set size. In general, the accuracies
are quite comparable, though, for some subjects, the local model is
better whereas for others, the global model has a slight advantage.

4.3.3 Recall Level Prediction. Finally, we report the results for
predicting recall level of the human subjects. First, we examine the
results when the classifier is trained using the EEG-derived features
alone. The results shown in Table 7 suggest that the classification
performance is not much better than random guessing. This sug-
gests that recall level is harder to predict using EEG data compared
to concentration level and reading speed predictions.

Instead of using the raw EEG features, we consider using the out-
put of the concentration level prediction as one of the input features
for recall level prediction. We also augment our feature set with side
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Figure 6: Reading speed prediction results for individual
subjects with 80% training set size.

Table 7: Performance of recall level prediction using only
EEG signals.

Accuracy
(%)

+ class F1
score (%)

- class F1
score (%)

Local 57.81 ± 2.25 63.27 ± 2.02 50.40 ± 2.82
Global 51.45 ± 2.35 58.28 ± 2.34 41.86 ± 3.17
Multi-task 57.55 ± 1.97 64.02 ± 1.63 48.18 ± 3.15
Random
guess (local) 53.36 57.61 48.15

Random
guess (global) 50.50 55.02 44.98

information about the reading materials and the human subjects.
Table 8 summarizes the classification results. Note that, among all
the side information features listed in Table 4, the local and multi-
task learning models include only features derived from the reading
material and learning process, whereas the global model also in-
corporates features about the individual subjects’ background. The
additional features help the global classifier to outperform both the
local and multi-task learning models. Note that if we exclude the
individual subjects’ background, the accuracy for the global model
decreases from 63.12% to 59.07%, while the accuracy for the local
models remains the same.

Observe that the performance for all three classifiers are better
than the results shown in Table 7, which employ only the EEG fea-
tures. In addition, the global model achieves 63% accuracy, which
is significantly higher than random guessing as well as the local
models, though it is still lower than the accuracies for concentra-
tion level and reading speed predictions. Similar to reading speed
classification, the performances for all three methods degrade con-
siderably with decreasing training set size.

The predictive performance for individual subjects shown in
Figure 7 validated our results that the global model is generally
more effective than the other two competing models. This result
makes sense as the global classifier is the only one that can utilize
side information about the individual subjects, such as technical
background and English proficiency, to predict recall level of the
subjects. As shown in Figure 8, these are the two most prominent
features for classification using the global model.



WI ’17, August 23-26, 2017, Leipzig, Germany Xi Liu, Pang-Ning Tan, Lei Liu, and Steven J. Simske

Table 8: Performance comparison for recall level prediction
using side information.

Accuracy
(%)

+ class F1
score (%)

- class F1
score (%)

80% data
for training

Local 61.52 ± 1.67 66.99 ± 1.66 53.90 ± 2.30
Global 63.12 ± 0.96 69.21 ± 0.86 54.03 ± 1.36
Multi-task 62.12 ± 1.30 68.09 ± 1.19 53.41 ± 1.63

20% data
for training

Local 54.77 ± 1.85 58.80 ± 2.32 49.80 ± 1.76
Global 59.72 ± 1.11 65.64 ± 1.22 51.30 ± 1.45
Multi-task 59.29 ± 1.40 63.28 ± 1.59 54.28 ± 1.85

10% data
for training

Local 54.30 ± 0.66 59.33 ± 0.98 47.81 ± 1.30
Global 57.78 ± 1.33 63.00 ± 1.3 50.80 ± 1.90
Multi-task 55.68 ± 0.94 60.63 ± 0.87 49.24 ± 1.93

Random
Guess

Local 53.36 57.61 48.15
Global 50.50 55.02 44.98
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Figure 7: Recall level prediction results for individual sub-
jects with 80% training set size.
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Figure 8: Feature weights for recall level prediction using
global model. RA: reading concentration; EL: English level;
TB: technical background; RD: reading duration; RS: reading
speed; LW: Linsear Write index

5 CONCLUSIONS
This paper investigates the feasibility of using EEG recordings to
monitor students’ cognitive states during their learning process.
Features are extracted from a broad spectrum of EEG band waves
to obtain a more comprehensive view of the brain signals. Our re-
sults showed that the concentration level and reading speed of the
subjects can be accurately determined from their EEG signals alone.

However, inferring the recall level is considerably harder, requir-
ing additional side information particularly about the background
knowledge of subjects. We also demonstrated the advantages of
using a broad spectrum of frequency bands to derive features for
the classification models. Finally, we showed that the choice of
classifier has a significant impact on the model’s performance.
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